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Abstract

Chronic hepatitis B virus (HBV) infection remains a major 
cause of liver diseases, including cirrhosis and hepatocellu-
lar carcinoma. Reliable biomarkers for assessing viral rep-
lication, liver damage, and predicting clinical outcomes are 
essential for effective patient management. This review fo-
cuses on two promising biomarkers: serum HBV RNA and 
hepatitis B core-related antigen, both of which show strong 
correlations with viral replication and disease progression. 
Serum HBV RNA levels reflect the quantity and transcrip-
tional activity of intrahepatic covalently closed circular DNA, 
providing insights into viral replication. They also correlate 
with other markers of replicative activity and have predictive 
value for key clinical outcomes, including hepatitis B e anti-
gen and hepatitis B surface antigen seroconversion, relapse 
after therapy cessation, and liver fibrosis. Similarly, hepatitis 
B core-related antigen is closely associated with covalently 
closed circular DNA levels, correlates with markers of viral 
replication, and shows promise in predicting liver fibrosis, cir-
rhosis, and the risk of hepatocellular carcinoma. This review 
highlights the potential of both biomarkers for monitoring 
disease progression and guiding therapeutic decisions, par-
ticularly in the context of personalized treatment strategies 
and risk assessment for liver-related complications.
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Introduction
Hepatitis B virus (HBV) remains a significant global health 
challenge, with over 250 million people worldwide living with 
chronic HBV infection despite the widespread promotion of 

vaccination for more than 40 years.1 If left untreated or in-
adequately managed, chronic HBV infection can progress to 
severe complications, including cirrhosis, liver failure, and 
hepatocellular carcinoma (HCC).2 HBV is a hepatotropic virus 
with a 3.2-kb partially double-stranded relaxed circular DNA 
(rcDNA) genome.3 During the HBV life cycle, rcDNA is re-
leased into the nucleus, where it is converted into covalently 
closed circular DNA (cccDNA) via host DNA repair mecha-
nisms.4 The cccDNA serves as a transcriptional template, 
generating a 3.5-kb pregenomic RNA (pgRNA) and multiple 
subgenomic RNAs (including preCore, preS1, preS2/S, and 
X mRNAs).4 The pgRNA is subsequently reverse-transcribed 
into rcDNA within nucleocapsids composed of hepatitis B core 
antigen (HBcAg). These nucleocapsids are then enveloped by 
hepatitis B surface antigen (HBsAg) to form mature virions, 
which are secreted from the cell.5,6 Notably, during pgRNA 
reverse transcription, 5–20% of transcripts undergo failed 
primer translocation, resulting in the formation of double-
stranded linear DNA.7 These double-stranded linear DNA 
molecules can integrate into the host genome.8,9 Once in-
tegrated, they act as persistent transcriptional templates for 
HBsAg production,10,11 contributing to immune tolerance in 
the host.12–14

Existing antiviral drugs cannot directly eliminate cccDNA 
or integrated HBV DNA within liver cells, making it very dif-
ficult to achieve a “complete cure” of hepatitis B.15–18 Given 
this limitation, one of the core goals of current antiviral treat-
ment is to suppress the transcriptional activity of cccDNA and 
inhibit the functionality of integrated HBV DNA, ultimately 
achieving a “clinical cure” of hepatitis B.19 Therefore, accu-
rately monitoring the activity levels of cccDNA and integrat-
ed HBV DNA is crucial for evaluating treatment efficacy.20–23 
Since these viral forms are exclusively confined to hepato-
cytes, liver biopsy remains the gold standard for evaluation. 
However, its clinical utility is severely limited by invasiveness 
and the lack of standardized procedural guidelines.24

Recent studies have demonstrated that serum HBV RNA 
and hepatitis B core-related antigen (HBcrAg) can reliably 
reflect the transcriptional activity of cccDNA, though their as-
sociation with the transcriptional activity of integrated HBV 
DNA requires further investigation. Moreover, they have 
shown potential clinical value in predicting antiviral treatment 
response, assessing liver fibrosis progression, and estimating 
HCC risk, offering novel tools for the precision management 
of chronic HBV infection.25–28 Therefore, this review system-
atically summarizes the clinical applications and research ad-
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vances of serum HBV RNA and HBcrAg in HBV infection and 
related diseases (Fig. 1).

Serum HBV RNA
In 1996, German researchers first discovered the presence 
of HBV RNA in the peripheral blood of chronic hepatitis B 
(CHB) patients.29 These RNA molecules primarily consist of 
non- or partially reverse-transcribed pgRNA, with significant 
heterogeneity due to diverse post-transcriptional process-
ing.30 Current research confirms five predominant classes 
of serum HBV RNA: (1) Full-length pgRNA (3.5 kb)31: The 
major component, transcribed directly from cccDNA in the 
hepatocyte nucleus, containing the complete coding region 
with a polyadenylated tail.28,32–35 (2) 3′-Truncated pgRNA: 
Generated by incomplete template degradation mediated by 
the RNase H domain of the viral polymerase during reverse 
transcription; it lacks the 3′ polyadenylated tail but retains 
the 5′ ε packaging signal.15,36–38 Its proportion increases sig-
nificantly with the duration of nucleos(t)ide analogue (NA) 
therapy.32,39 (3) pgRNA splicing variants: Arising from aber-
rant host cell splicing mechanisms, with at least 20 distinct 
secreted isoforms (sp1–sp20) identified15,36–38,40,41; sp1 is 
the most abundant, constituting up to 30% of total pgRNA in 
HBV-infected HCC cell lines.16,42 (4) HBx transcripts: Gener-
ally present at low levels,15,28,43 including full-length or trun-
cated HBx open reading frames as well as an ultra-long vari-
ant containing the polymerase (P) open reading frame.15,28,44 
(5) HBV-human chimeric RNAs: Recently detected in serum 
samples from CHB patients harboring integrated HBV DNA. 
These include both 5′-HBV-human-3′ and 5′-human-HBV-3′ 
transcripts, although they represent only a minimal propor-

tion of total serum HBV RNA.28,45 Overall, the composition of 
serum HBV RNA is highly dynamic and complex. The specific 
RNA species present and their relative proportions are influ-
enced by multiple factors, including infection stage, antiviral 
treatment status, and detection methodologies.32

In addition, mounting evidence suggests that each distinct 
RNA species has its own clinical implications. For instance, 
splice variants can regulate HBV replication and promote the 
migration and invasion of liver cancer cells46–48; 3′-truncated 
pgRNA, which accumulates during long-term NA therapy, is 
implicated in viral persistence32,39; and the newly discov-
ered HBV-human chimeric RNAs are closely associated with 
the development and progression of HCC.49,50 Nevertheless, 
current clinical research primarily focuses on detecting total 
serum pgRNA levels, which encompass full-length, 3′-trun-
cated, and spliced variants.30 This strategy is based on three 
key factors. Firstly, the total amount of pgRNA constitutes 
the majority of serum HBV RNA, providing a stable foun-
dation for detection. Secondly, the relative proportions and 
contents of different components exhibit highly dynamic 
changes, and existing mainstream detection techniques51 
make it difficult to analyze individual components accurately. 
Most importantly, as a direct transcription product of cccDNA, 
changes in serum pgRNA levels specifically reflect the tran-
scriptional activity of cccDNA.31 Therefore, monitoring overall 
serum pgRNA levels is helpful for assessing viral replication 
status and the progression of HBV-related liver disease.52–54

Serum HBV RNA quantification techniques
Quantitative detection of serum HBV RNA is critically impor-
tant for understanding viral activity, assessing cccDNA tran-
scriptional activity, and guiding clinical management. Cur-

Fig. 1.  Production and clinical application of Serum HBV RNA and HBcrAg. Created with BioRender. cccDNA, covalently closed circular DNA; HBeAg, hepatitis 
B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; pgRNA, pregenomic RNA; rcDNA, relaxed circular DNA; p22cr, 22-kDa core-related antigen 
(precore protein).
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rently, several molecular biology techniques are employed, 
primarily including reverse transcription (RT)-quantitative 
polymerase chain reaction (qPCR), RT-droplet digital poly-
merase chain reaction (PCR), fluorescence-based nucleic 
acid isothermal amplification testing (SAT), and rapid ampli-
fication of cDNA ends (RACE). These methods have distinct 
principles, advantages, and limitations, and differ in their ca-
pability to detect various HBV RNA isoforms.30

Widely used serum HBV RNA quantification methods in 
clinical practice and research, such as RT-qPCR and SAT as-
says, cannot effectively differentiate between distinct HBV 
RNA isoforms.51 This limitation arises from their core techni-
cal principle: they target conserved, shared regions within the 
HBV genome (e.g., the X, preC/C, or S regions) rather than 
unique molecular markers specific to individual isoforms.31,55 
RT-qPCR detects the sum of all RNA molecules containing 
the target sequence within the amplified region by reverse 
transcription and real-time amplification.51 While highly sen-
sitive, this approach indiscriminately captures pgRNA, splice-
generated SP1 variants, and truncated RNAs. SAT utilizes 
primers incorporating T7 promoters to achieve isothermal 
amplification, offering operational simplicity and eliminating 
the need for DNase treatment.56 However, its amplification 
products similarly represent a mixed signal from all isoforms 
within the primer-binding region.

In contrast, RACE and droplet digital PCR possess inherent 
potential for isoform differentiation. RACE selectively ampli-
fies polyadenylated transcripts by anchoring to the polyade-
nylated tail, enabling separation of full-length pgRNA gener-
ated by the canonical polyadenylation signal from truncated 
RNAs produced by the cryptic polyadenylation signal.57–60 
However, this method cannot detect truncated RNAs lacking 
a polyadenylated tail. Droplet digital PCR leverages microflu-
idic partitioning for single-molecule isolation and Poisson dis-
tribution principles.37 When combined with isoform-specific 
primer design, it enables absolute quantification of different 
splice variant proportions. Notably, conventional RT-qPCR 
also theoretically holds differentiation potential if designed 
with probes targeting isoform-specific markers; however, 
due to high sensitivity requirements, complex primer/probe 
design, and lack of standardization, it is rarely applied in rou-
tine clinical testing.51,61

Given that distinct HBV RNA isoforms have unique biologi-
cal properties and clinical significance, the inability of current 
mainstream methods to differentiate them obscures critical 
biological insights within composite detection signals.62 This 
represents a major obstacle to achieving precision medicine 
in HBV management. To overcome this bottleneck, future 
research must urgently focus on: first, developing novel de-
tection platforms capable of highly sensitive, simultaneous 
differentiation of core isoforms; second, establishing inter-
national reference materials and unified detection standards 
encompassing these major isoforms to ensure result compa-
rability and accelerate clinical translation.

Serum HBV RNA reflects cccDNA quantity and tran-
scriptional activity
Unlike traditional HBV biomarkers such as HBV DNA and HB-
sAg, serum HBV RNA originates directly from the cccDNA 
template, making it a more precise indicator of intrahepat-
ic cccDNA levels and transcriptional activity.63 Wang et al. 
(2018) investigated this relationship in the natural history 
of CHB, finding a moderate correlation between serum HBV 
RNA and intrahepatic cccDNA (r = 0.596, P < 0.001).64

Further studies have corroborated this correlation in un-
treated chronic HBV infections, with serum HBV RNA levels 
showing variable correlations with intrahepatic cccDNA (r = 

0.25–0.89).58,64–66 These variations may arise from differ-
ences in patient characteristics or detection methodologies 
for circulating HBV RNA and intrahepatic cccDNA.63

In patients undergoing antiviral therapy, serum HBV RNA 
also correlates with cccDNA levels. For example, in Peg-in-
terferon-treated patients, serum HBV RNA demonstrated a 
stronger correlation with cccDNA than other HBV biomark-
ers after 48 weeks of treatment, irrespective of hepatitis B e 
antigen (HBeAg) seroconversion.67 Similarly, in NAs-treated 
patients, serum HBV RNA, derived predominantly from cccD-
NA and minimally affected by antiviral drugs, has proven to 
be a reliable marker for monitoring cccDNA levels and activ-
ity.68 Even in patients with suppressed HBV replication under 
NAs therapy, a significant correlation between serum HBV 
RNA and cccDNA transcriptional activity remains evident (r = 
0.78, P < 0.0001).69

In summary, serum HBV RNA, as a direct downstream 
product of cccDNA, serves as a robust biomarker reflecting 
intrahepatic cccDNA levels and activity. Its utility has been 
validated in both untreated CHB patients and those receiving 
antiviral therapy, highlighting its potential for infection moni-
toring and treatment response evaluation.

Correlation between serum HBV RNA and integrated 
DNA
In recent years, there has been growing research interest in 
the association between serum HBV RNA and integrated viral 
DNA. Studies reveal that integrated HBV DNA can transcribe 
two forms of replication-independent RNAs: (i) 5′-HBV-hu-
man-3′ chimeric RNAs (integrant-derived RNAs, id-RNAs) ini-
tiated from viral promoters and polyadenylated using human 
polyadenylation signals, and (ii) 5′-human-HBV-3′ RNAs ini-
tiated from upstream human promoters. Although this sug-
gests the potential presence of integrant-derived envelope 
protein (cps) RNAs in serum, a systematic analysis of their 
complete molecular profiles remains lacking.28 Furthermore, 
whether these RNAs accurately reflect the transcriptional ac-
tivity and integration levels of integrated DNA remains un-
clear.

Given that the relevant molecular mechanisms have not 
been fully elucidated, an in-depth exploration of the charac-
teristics of integrant-derived RNA in serum and its relation-
ship with the transcriptional activity of viral integration sites 
will help elucidate the molecular mechanisms of HBV persis-
tent infection and provide potential biomarkers for clinical 
monitoring.

Serum HBV RNA predicts HBeAg and HBsAg serocon-
version
Serum HBV RNA levels and their dynamic changes are 
emerging as potential predictors of HBeAg and HBsAg sero-
conversion. During the immune-active phase, a rapid decline 
in serum HBV RNA strongly correlates with higher rates of 
spontaneous HBeAg seroconversion. Specifically, when HBV 
pgRNA levels at week 28 are below 5.63 log10 copies/mL or 
when the reduction in HBV pgRNA from baseline exceeds 
1.85 log10 copies/mL, the likelihood of spontaneous HBeAg 
seroconversion within 48 weeks reaches approximately 87%. 
In contrast, patients with higher pgRNA levels or smaller re-
ductions exhibit significantly lower conversion rates of 10–
12%.70

In treated patients, HBV RNA status after therapy also 
closely predicts HBeAg seroconversion. Studies have shown 
that patients remaining HBV RNA-positive after 48 weeks of 
NA therapy experience a prolonged time to seroconversion 
and a reduced likelihood of achieving it (hazard ratio (HR) 
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= 6.69, 95% CI: 1.88–23.84).71 Additionally, early dynamic 
changes in HBV RNA levels serve as reliable indicators of 
HBeAg seroconversion. For instance, HBV RNA levels at week 
12 are significantly predictive of HBeAg seroconversion at 96 
weeks of NAs therapy, with a threshold of 6.18 log10 copies/
mL (sensitivity 81%, specificity 80%, OR = 3.560, 95% CI: 
1.39–9.110, P = 0.008). Fluctuations in HBV RNA at later 
stages, such as weeks 24 and 48, as well as three and six 
months post-treatment, further enhance predictive accuracy 
in HBeAg-positive patients.72–74

Beyond HBeAg seroconversion, HBV RNA levels may also 
predict HBsAg seroconversion. HBV RNA-negative patients 
exhibit significantly lower quantitative HBsAg levels com-
pared to HBV RNA-positive patients (2.2 vs. 3.1 log10 IU/
mL, P < 0.001).75 Furthermore, patients with HBV RNA levels 
below 1,000 copies/mL at treatment cessation demonstrate 
a significantly higher cumulative HBsAg clearance rate over 
six years (30.9% vs. 1.6%, P = 0.007).76

In conclusion, serum HBV RNA levels and their changes 
are useful predictors of both HBeAg and HBsAg seroconver-
sion. These findings highlight the potential of serum HBV 
RNA as a valuable tool for guiding individualized treatment 
strategies and monitoring therapeutic outcomes in CHB.

Serum HBV RNA predicts relapse after therapy ces-
sation
Current cessation criteria for HBV antiviral therapy continue 
to face clinical challenges, with over 40% of patients dis-
continuing treatment requiring reinitiation due to virological 
relapse.77 The underlying mechanism lies in the persistent 
viral reservoir maintained by cccDNA, which serves as the 
fundamental source of post-treatment recurrence. Serum 
HBV RNA, as a direct transcriptional product of cccDNA, dy-
namically reflects the transcriptional activity of this viral res-
ervoir in real time.54 Leveraging this biological characteristic, 
multiple clinical investigations have demonstrated the po-
tential utility of serum HBV RNA quantification in predicting 
post-therapeutic viral rebound and optimizing personalized 
treatment cessation strategies.

Multiple studies have consistently demonstrated a signifi-
cant association between serum HBV RNA levels at the end 
of treatment (EOT) and the risk of virological relapse.78,79 A 
study involving 74 patients who completed one year of NAs 
therapy revealed a marked disparity in relapse rates between 
the EOT HBV RNA-negative and -positive groups (25.4% vs. 
71%, P = 0.011).80 This correlation was further quantified 
in a cohort of 114 entecavir-treated patients, where an HBV 
RNA cutoff ≥ 44.6 U/mL demonstrated over 90% predictive 
power for post-treatment relapse.81

Furthermore, emerging evidence supports the enhanced 
prognostic capacity of combined virological biomarker profil-
ing for post-treatment recurrence prediction. Fan et al. con-
ducted a four-year longitudinal follow-up study of 130 treat-
ment-naïve HBeAg-positive patients, demonstrating that 
dual negativity of HBV DNA and RNA at EOT conferred a four-
fold lower clinical relapse rate compared to double-positive 
cases (8.0% vs. 31.4%, P = 0.018).82 Innovatively, the Seto 
research group developed a novel composite criterion inte-
grating HBV RNA negativity with HBsAg < 10 IU/mL, which 
reliably identifies candidates with minimal rebound risk post-
cessation.81 Current studies suggest that integrating multidi-
mensional viral markers may enable precise risk stratification 
in clinical practice. However, attention should be paid to the 
biological heterogeneity of different markers (e.g., HBV RNA 
reflecting cccDNA activity vs. HBsAg characterizing host im-
mune response) when setting thresholds. Future validation 
through multicenter cohorts and dynamic marker combina-

tion models is warranted.
In summary, serum HBV RNA holds significant translation-

al medical value in optimizing antiviral treatment endpoints 
for CHB and predicting recurrence risk after drug withdrawal. 
However, for routine clinical application, large-scale, multi-
center prospective cohort studies are needed to address key 
issues: (1) determining optimal predictive thresholds at dif-
ferent treatment stages (e.g., NAs therapy, interferon ther-
apy); (2) establishing standardized protocols for dynamic 
monitoring; and (3) validating combined biomarker predic-
tion models across diverse populations. These efforts will 
provide a solid evidence base for developing individualized 
drug withdrawal strategies guided by biomarkers.

Serum HBV RNA assesses liver fibrosis
The early diagnosis and monitoring of liver fibrosis are critical 
for effective management of CHB. Although liver biopsy re-
mains the gold standard for fibrosis evaluation, its invasive-
ness and risk of sampling errors limit routine clinical use.83 
Recent studies highlight serum HBV RNA as a non-invasive 
biomarker that correlates strongly with both the progression 
and regression of liver fibrosis, offering an alternative diag-
nostic tool.84–86

Wang et al. (2017) found significant correlations between 
serum HBV RNA levels and histopathological scores for necro-
inflammation and fibrosis (r = 0.665, P <0.001 for grading; 
r = 0.722, P <0.001 for staging).87 Using a cutoff value of 
2.45 log10 copies/mL, serum HBV RNA effectively differenti-
ates samples with inflammation activity scores and fibrosis 
scores of <2 versus ≥2, achieving AUROCs of 0.88 and 0.85, 
respectively, surpassing the diagnostic accuracy of HBsAg.87 
Furthermore, Huang et al. (2020) demonstrated that serum 
HBV RNA levels are independent predictors of liver fibrosis in 
both HBeAg-positive (OR = 0.514, P < 0.001) and HBeAg-
negative patients (OR = 3.574, P < 0.001), outperforming 
traditional indices such as APRI and FIB-4.83

In addition to assessing fibrosis progression, serum HBV 
RNA levels are also effective in predicting fibrosis regression. 
Lower HBV RNA levels are observed in patients with regres-
sion compared to those without.84,85 Notably, a reduction in 
HBV RNA levels exceeding 0.63 log10 copies/mL within the 
first six months of treatment predicts fibrosis regression at 
60 months, with a sensitivity of 53.8% and specificity of 
92.3%.84 This likely reflects decreased cccDNA transcrip-
tional activity in hepatocytes, a key factor in fibrosis resolu-
tion.65,88

In summary, serum HBV RNA serves as a pivotal bio-
marker for evaluating liver fibrosis in CHB patients. Its ability 
to assess both fibrosis progression and regression provides 
valuable insights for optimizing treatment strategies and im-
proving patient outcomes.

HBV RNA predicts HCC risk and prognosis
The strong relationship between HBV RNA and cccDNA has 
positioned serum HBV RNA as a promising biomarker for 
predicting HCC risk and prognosis in CHB patients. A 2021 
case-control study from Hong Kong first demonstrated sig-
nificantly higher serum HBV RNA positivity and levels in HCC 
patients compared to non-HCC patients during prior treat-
ment (undetectable pgRNA: 9.6% vs. 36.5%, P < 0.001).89 
These findings were corroborated by a large prospective co-
hort study that established elevated serum HBV RNA levels 
as a significant risk factor for HCC in CHB patients.90

In CHB patients undergoing long-term antiviral therapy 
with undetectable serum HBV DNA, elevated serum pgRNA 
levels were associated with poorer overall survival and higher 
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recurrence rates following hepatectomy. Conversely, pgRNA-
negative patients exhibited significantly improved overall 
survival (P < 0.001).91 Cox multivariate analysis further 
identified high serum HBV RNA expression as an independ-
ent predictor of HCC recurrence, with HRs of 2.1 (P = 0.003) 
in Cohort A and 1.6 (P = 0.033) in Cohort B. The underlying 
mechanism may involve multiple carcinogenic pathways: (1) 
elevated HBV pgRNA levels promote expression of oncopro-
teins91; (2) HBV RNA can act as a microRNA sponge, seques-
tering and inhibiting tumor-suppressing host microRNAs, 
thereby promoting HCC growth and invasion.92

Interestingly, patients with poorly differentiated HCC or 
lymphovascular invasion were found to have lower serum 
HBV RNA levels, particularly one year after diagnosis (1.71 
[IQR 1.71–2.37] vs. 2.14 [IQR 1.71–3.59] l log10 IU/mL, P 
= 0.076).89,93 This may be due to the high metabolic state 
in poorly differentiated HCC being unfavorable to HBV sur-
vival.94

Overall, comprehensive analysis indicates that elevated 
serum HBV RNA levels are positively correlated with HCC 
risk, postoperative recurrence, and poor prognosis in CHB 
patients. However, patients with highly aggressive or poorly 
differentiated advanced HCC exhibit markedly reduced se-
rum HBV RNA levels. This paradox suggests that the predic-
tive value of HBV RNA may be disease stage-specific: during 
early HCC stages, active viral replication may directly drive 
tumorigenesis, whereas in advanced disease, dynamic tumor 
microenvironment remodeling might suppress viral replica-
tion, resulting in an inverse correlation between HBV RNA 
levels and tumor malignancy. Future studies should system-
atically elucidate the dynamic fluctuation patterns of HBV 
RNA according to HCC clinical staging and molecular sub-
typing. Additionally, developing multidimensional predictive 
models integrating clinicopathological features, imaging find-
ings, and molecular biomarkers is essential to enhance preci-
sion in HCC risk prediction and prognosis evaluation.

HBcrAg
HBcrAg is a composite biomarker comprising three viral 
proteins—HBcAg, HBeAg, and the 22 kDa truncated precur-
sor core protein—which share an identical 149-amino acid 
sequence but differ in their processing pathways.95 HBcAg 
is produced by translation of the 3.5 kb pgRNA transcribed 
from cccDNA; HBeAg is generated via translation of precore 
mRNA into the precore protein, followed by N-terminal spe-
cific proteolytic processing to remove the signal peptide; and 
the 22 kDa truncated precursor core protein represents a 
distinct processing form of the precore protein undergoing 
both N-terminal and C-terminal modifications.96–100

Because these proteins are almost entirely dependent on 
cccDNA-driven transcription and translation, HBcrAg quanti-
tatively reflects the transcriptional activity of this viral reser-
voir, making it a potential clinical marker for evaluating HBV 
persistence and therapeutic efficacy.

HBcrAg correlates with intrahepatic cccDNA
HBcrAg has been demonstrated as a reliable surrogate mark-
er for intrahepatic cccDNA due to its strong and consistent 
correlation with cccDNA levels.101–105 Studies show serum 
HBcrAg is significantly associated with intrahepatic cccDNA, 
independent of HBeAg status. In HBeAg-positive patients, 
multivariate regression analysis revealed that serum HB-
crAg correlated more strongly with intrahepatic cccDNA than 
HBsAg (β = 0.563 vs. 0.328, both P < 0.001). In contrast, 
among HBeAg-negative patients, serum HBcrAg was the only 
biomarker significantly correlated with intrahepatic cccDNA 

levels (β = 0.774, P < 0.001).102

Further evidence indicates that, in patients undergoing 
NA therapy, reductions in serum HBcrAg closely parallel de-
creases in intrahepatic cccDNA. This correlation is stronger 
than that between serum HBsAg and intrahepatic cccDNA, 
both before and during treatment.101,103–105 While prolonged 
NA therapy often results in undetectable serum HBV DNA 
in most patients, serum HBcrAg remains detectable in ap-
proximately 78% of cases.106 This persistence is attributed 
to NAs’ ability to inhibit HBV DNA replication with minimal 
effect on cccDNA transcription and HBcrAg synthesis.107 Even 
after five years of entecavir therapy, a moderate correlation 
between serum HBcrAg and intrahepatic cccDNA persists (r 
= 0.419, P = 0.005).106,108

Overall, HBcrAg demonstrates superior and more consist-
ent correlation with intrahepatic cccDNA compared to HBsAg 
and HBV DNA across diverse clinical contexts. These findings 
establish HBcrAg as a reliable surrogate marker for cccDNA 
in clinical practice. With the advent of novel therapies target-
ing cccDNA, HBcrAg holds significant potential as a non-inva-
sive indicator for directly assessing cccDNA activity, thereby 
guiding precision therapeutic interventions.

HBcrAg correlates with other HBV markers reflecting 
replicative activity
Suzuki et al. (2019) first reported a significant correlation 
between HBcrAg and other virological markers in a study 
involving 57 CHB patients, observing a strong positive cor-
relation between serum HBcrAg and HBV DNA levels (r = 
0.713, P < 0.001).109 Subsequent studies confirmed that this 
correlation remains consistent regardless of HBeAg status 
(r = 0.59–0.85, P < 0.001)104,110 or treatment history (r = 
0.786–0.820, P < 0.001).105,111

While the correlation between HBcrAg and HBV DNA is 
well established, evidence suggests a comparatively weaker 
relationship between HBcrAg and HBsAg. A cohort study of 
2,666 patients in Taiwan found a strong correlation between 
HBcrAg and HBV DNA (r = 0.83, P < 0.001), whereas the cor-
relation with HBsAg was moderate (r = 0.59, P < 0.001).112 
This discrepancy may be explained by the distinct origins of 
these markers: both HBcrAg and HBV DNA derive from cc-
cDNA, whereas HBsAg can also originate from integrated vi-
ral genomes.113 Additionally, a moderate correlation between 
HBcrAg and HBeAg levels has been reported (r = 0.491, P < 
0.001).102

In summary, HBcrAg exhibits strong correlations with HBV 
DNA and moderate correlations with HBsAg and HBeAg, ef-
fectively reflecting HBV replicative activity. These findings 
highlight its potential utility in monitoring viral dynamics in 
CHB patients.

HBcrAg predicts HBeAg and HBsAg seroconversion
Emerging evidence suggests HBcrAg may serve as a sup-
plementary biomarker for monitoring HBeAg and HBsAg 
seroconversion in CHB management. Studies show that pa-
tients with lower HBcrAg levels or significant reductions in 
HBcrAg are more likely to achieve HBeAg seroconversion, 
either spontaneously or during NA therapy.114,115 For exam-
ple, at the third month of treatment, an HBcrAg level of 6.20 
log10 U/mL moderately predicts HBeAg seroconversion (AU-
ROC = 0.663).116 In patients undergoing combined NAs and 
interferon-αtherapy, baseline HBcrAg levels > 4.5 log U/mL 
predict non-response and failure to achieve HBeAg serocon-
version at 24 months (P < 0.003).117

Additionally, HBcrAg may serve as a valuable indicator in 
predicting HBsAg clearance. In cases of spontaneous HBsAg 
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clearance, 79% of patients had undetectable HBcrAg lev-
els.118,119 Further research demonstrated that baseline HB-
crAg levels are closely associated with virological response 
rates and HBsAg seroconversion in treated patients. Specifi-
cally, a baseline HBcrAg level of 2.550 log10 U/mL moderately 
predicts HBsAg seroconversion (AUROC = 0.552).120 At the 
EOT, HBcrAg levels below 2 log10 U/mL significantly associate 
with higher virological response rates and HBsAg conversion 
(P < 0.001).121 These findings suggest that lower HBcrAg 
levels during treatment may indicate a greater likelihood of 
successful HBsAg conversion.

In conclusion, existing studies suggest HBcrAg levels pro-
vide supplementary insights for anticipating HBeAg and HB-
sAg seroconversion. Further investigations should focus on 
validating these findings through standardized multicenter 
studies, exploring integration with emerging biomarkers, 
and establishing long-term clinical correlations to refine its 
prognostic utility.

HBcrAg evaluates the risk of HBV recurrence after 
treatment
HBcrAg, as a marker of cccDNA transcriptional activity, has 
been extensively validated for its role in predicting HBV re-
lapse after discontinuation of antiviral therapy. Numerous 
studies have demonstrated a strong correlation between 
baseline HBcrAg levels and the risk of virological relapse. A 
prospective study in Hong Kong revealed that the rate of 
HBV reactivation in patients with baseline HBcrAg positivity 
was significantly higher than in those with HBcrAg negativity 
(71.8% vs. 31%, P = 0.002). Multivariate analysis further 
identified baseline HBcrAg positivity as an independent risk 
factor for HBV reactivation (P = 0.004; HR = 2.94; 95% CI: 
1.43–6.07).122

In addition to baseline levels, HBcrAg at the EOT has 
emerged as a critical predictor of relapse risk. Studies con-
sistently show that patients who experience reactivation af-
ter antiviral therapy have significantly higher HBcrAg levels 
at EOT compared to those who remain relapse-free (4.9 log 
U/mL vs. 3.2 log U/mL, P = 0.009).123 Multiple analyses have 
confirmed that HBcrAg levels at EOT are an independent risk 
factor for HBV recurrence, with optimal cutoff values ranging 
from 3.7 to 4.0 log U/mL (P = 0.002–0.024).124–126

Shinkai et al. (2006) further highlighted the predictive val-
ue of HBcrAg at treatment cessation, showing that an HBcrAg 
level below 3.4 log U/mL at EOT was the only independent 
factor effectively predicting non-recurrence after therapy (P 
= 0.042).127 Moreover, the Japanese Society of Hepatology 
has incorporated HBcrAg into clinical guidelines for relapse 
risk assessment, recommending a cutoff of <3.0 log U/mL to 
define low relapse risk.128

In summary, both baseline and EOT HBcrAg levels are val-
uable for predicting HBV reactivation and recurrence. Regu-
lar monitoring of these levels enables clinicians to stratify 
patients by relapse risk, optimize treatment discontinuation 
strategies, and improve long-term clinical management.

HBcrAg predicts liver fibrosis and cirrhosis risk
Severe necroinflammatory activity is widely recognized as 
the initial stage in liver fibrosis progression. Studies have 
shown that HBcrAg independently predicts both signifi-
cant necroinflammation (P = 0.000; OR = 2.290; 95% CI: 
1.524–3.441) and significant liver fibrosis (P = 0.000; OR = 
2.456; 95% CI: 1.631–3.699). The predictive accuracy for 
necroinflammation and fibrosis, measured by the area un-
der the curve, is 0.807 (95% CI: 0.707–0.885) and 0.804 
(95% CI: 0.703–0.883), respectively.129 These associations 

remain consistent across different HBeAg statuses (both P < 
0.001).105,129,130

Notably, HBcrAg demonstrates high diagnostic accuracy 
for liver fibrosis with optimal cutoff values specific to HBeAg 
status. For HBeAg-positive patients, a cutoff of ≤2.45 × 104 
kU/mL effectively excludes severe lesions, while for HBeAg-
negative patients, a cutoff of ≥4.02 kU/mL is more suita-
ble for confirming significant liver damage (area under the 
curve > 0.70 for both). Based on the Youden index, HBcrAg 
thus serves distinct roles in fibrosis diagnosis depending on 
HBeAg status.129

As liver fibrosis progresses, cirrhosis represents its end 
stage, often accompanied by severe liver damage and func-
tional impairment.131 A Japanese study first established the 
association between HBcrAg levels and cirrhosis progression, 
identifying HBcrAg ≥ 3.7 log U/mL as an independent risk 
factor for cirrhosis (HR = 3.28; 95% CI: 1.60–6.75).132 In a 
long-term follow-up study of 1,673 CHB patients, Tseng et al. 
confirmed a significant correlation between elevated HBcrAg 
levels and cirrhosis risk (P < 0.001). Risk stratification analy-
sis revealed that compared to patients with HBcrAg < 10 kU/
mL, those with HBcrAg levels of 10–99 kU/mL and ≥100 kU/
mL had HRs of 3.32 (95% CI: 1.99–5.52) and 7.35 (95% CI: 
4.28–12.64), respectively.133

In summary, HBcrAg is a promising non-invasive biomark-
er for assessing the risk of liver fibrosis and cirrhosis. Its 
strong predictive capabilities, especially when stratified by 
HBeAg status, highlight its clinical value. However, further 
research is needed to validate its applicability across diverse 
patient populations and clinical settings.

HBcrAg predicts HCC risk
HCC accounts for 75–85% of primary liver cancers and is 
associated with poor prognosis.134 The limited sensitivity of 
traditional imaging and liver function tests for early diagno-
sis underscores the urgent need for novel serological mark-
ers.135,136 Recent studies have identified HBcrAg as a promis-
ing biomarker for predicting HCC risk, offering potential for 
early diagnosis and individualized risk assessment.

Kumada et al. (2013) first demonstrated a significant as-
sociation between serum HBcrAg levels and HCC occurrence, 
reporting that elevated HBcrAg was independently associat-
ed with HCC development (HR = 2.77; 95% CI: 1.07–7.17; 
P = 0.036).137 Subsequent studies have corroborated this 
finding, demonstrating that high serum HBcrAg levels are 
closely linked to HCC risk regardless of treatment status. For 
example, Tada et al. conducted a retrospective cohort study 
in untreated patients, revealing that baseline serum HBcrAg 
levels exceeding 2.9 log U/mL were associated with a fivefold 
increased risk of HCC compared to lower levels.138

In patients receiving NA therapy, serum HBcrAg levels also 
strongly correlate with HCC risk. Research indicates that pa-
tients with serum HBcrAg levels exceeding 3.89 log U/mL 
after treatment exhibit a threefold higher risk of develop-
ing HCC.139 Additionally, Hosaka et al. (2019) reported that 
patients with continuously rising HBcrAg levels during treat-
ment face significantly greater HCC risk compared to those 
with stable or declining levels.140

Overall, serum HBcrAg has been established as an inde-
pendent predictive biomarker for HCC, with elevated levels 
significantly correlating with HCC risk in both untreated and 
antiviral-treated patients. Dynamic monitoring of HBcrAg 
facilitates evaluation of disease progression and prognosis, 
supporting early risk stratification. Future research should fo-
cus on integrating HBcrAg with other biomarkers to develop 
predictive models, while elucidating its mechanistic links to 
HBV-related carcinogenesis.
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Conclusions
Serum HBcrAg and HBV RNA have emerged as promising 
biomarkers for the monitoring and prognostication of CHB. 
Their applications span a broad range of clinical scenarios, 
including predicting HBeAg and HBsAg seroconversion, as-
sessing the risk of HBV recurrence following treatment ces-
sation, evaluating liver fibrosis and cirrhosis, and forecasting 
the development of HCC. These biomarkers hold significant 
potential to advance personalized treatment strategies and 
improve clinical outcomes in CHB management. Despite their 
promise, further validation studies are necessary to estab-
lish standardized cutoff values and refine their clinical utility 
across diverse patient populations.
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